MH3100 Real Analysis I Tutorial 6

Qikun Xiang

School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore

26 February, 2021

Recap:	Week	6
--------	------	---

Basic Topology of IR (topologies are characterised by the open sets)

Open set: D is open () \forall x \in O, \forall \text{E70}, \forall \text{E(x)} \subseteq 0.

V_E(x) = (X-E, x+E)

Intuitively speaking: "for every point $x \in O$, you can zoom in close enough to find a neighborhood of x entirely contained in O"

Limit point:

x is a limit point of $A \Leftrightarrow \forall \varepsilon > 0$, $\exists y \in V_{\varepsilon}(x) \cap A$, $y \neq x$ x is an isolated point of $A \Leftrightarrow x$ is not a limit point of A

()) \~~ V((x) = (x-6, x+6)

Intuitively speaking: "no matter how close you zoom in, you can always find a point of A in the neighborhood of x other than x itself"

Closed set: C is closed

⇒ ∀x, (x is a limit point of C → x∈C)

"C contains all its limit points"
also: C is closed & C is open ((ater)

Closure: the closure of A is $\overline{A} \rightleftharpoons \overline{A} = A \cup L$ where L is the set of limit points of A

Characterisation of open sets:
"arbitrary union of open sets is open":
For any Collection of Subsets of IR (Oi)iei,
Characterisation of open sets: "arbitrary union of open sets is open": For any Collection of Subsets of IR (Oi)ieI, (VitI, Oi is open) -> U.D. is open.
"finite intersection of open sets is open": $\forall N \in \mathbb{N}$, (0; is open for $ \leq i \leq n$) $\rightarrow \bigcap_{i=1}^{n} 0$; is open.
$\forall N \in \mathbb{N}$, $(0; is open for \leq i \leq n) \rightarrow (-10; is open.$
Equivalent characterisation of limit points
X is a limit point of A () = (xn) CA
X is a limit point of $A \iff \begin{cases} \exists (x_n) \in A \\ x_n \neq x, \forall n \in \mathbb{N} \end{cases}$ $\begin{cases} \exists (x_n) \in A \\ (\exists (x_n) \in A \end{cases}$
$\lambda_{\alpha} = \lambda_{\alpha}$
In other words . 11 x is the limit of a sequence
In other words: "x is the limit of a sequence in A which does not include x"
Equivalent characterisation of closedness
C is closed = every Country / conversent seaward
C is closed wery Cauchy/convergent sequence in C has its limit in C
"arbitrary intersection of closed sets is closed": For any collection of subsets of IR (Ci)iEI (ViEI, Ci is closed) -> n Ci is closed
the contract of the contract of IP ((a))
Hier Collection of substitution of the Collection of the Collectio
(VIEI, C. 13 CLOSED) - / II C; i's closed
"finite union of closed sets is closed": $V \cap V $
V NC/N, (Ci ; S CLOSED for 121EN) -> U Ci is closed

Equivalent characterisation of closure
·
\overline{A} is the closure of $\overline{A} \Leftrightarrow \overline{A}$ is the interestion of
sets $\langle C \subseteq R : A \subseteq C,$
C is closed }
Check: · this intersection is closed because it is
the intersection of (uncountably many)
closed sets
• if C is closed and $C \supseteq A$, then $\overline{A} \subseteq C$.
D 1
Reminder: not open + closed
not closed # open
Examples:
(0, i] is not open since Vz(1) \$ (0,1] \$ 270
(0,1) is not closed since D is a limit point
of (0,1] yet 0 & (0,1].
1 , 2 1 , 2 4 6 , 7
A in Q3 is neither open nor closed.
, , , , , , , , , , , , , , , , , , ,

1. Give an example of an infinite collection of nested open sets

 $O_0 \supseteq O_1 \supseteq O_2 \supseteq O_3 \supseteq \cdots$,

whose intersection $\bigcap O_n$ is nonempty and closed.

Hint. See if any of these works:

(a)
$$O_n = (0, \frac{1}{n+1})?$$
 $O_n = (-\frac{1}{n+1}, \frac{1}{n+1})?$ $O_n = (-\frac{1}{n+1}, 1 + \frac{1}{n+1})?$

$$O_n = (-$$

$$a = \left(-\frac{1}{n+1}\right)$$

$$n+1$$
 $n+1$

(a) $\bigcap_{N=0}^{\infty} (0, \frac{1}{N+1}) = \emptyset$. Proof = If $x \notin D_0 = (0,1)$ then $x \notin \bigcap_{N=0}^{\infty} (0, \frac{1}{N+1})$

If $x \in O_0 = (0,1)$, then there exists NEW such that

(b) $\bigcap_{n=0}^{\infty} \left(-\frac{1}{n+1}, \frac{1}{n+1} \right) = \frac{1}{3}$, which is non-empty and closed proof: $0 \in (-\frac{1}{n+1}, \frac{1}{n+1})$ $\forall n \in \mathbb{N}$ $\Rightarrow 0 \in \bigcap_{n=0}^{\infty} \left(-\frac{1}{n+1}, \frac{1}{n+1} \right)$

Suppose $\times \neq 0$. If $\times \in \mathcal{O}_0 = (-1,1)$, then $\times \in \bigcap_{n=1}^{\infty} \mathcal{O}_n$

If x E (0,1), then there exists NEN such that

 $\times 7 \frac{1}{NH}$. Thus, $\times & (-\frac{1}{NH}, \frac{1}{NH})$ and $\times & \bigcap_{n=1}^{\infty} (-\frac{1}{MH}, \frac{1}{NH})$

If $x \in (-1,0)$, then there exists $N \in \mathbb{N}$ such that $x < -\frac{1}{N+1}$. Thus, $x \notin (-\frac{1}{N+1}, \frac{1}{N+1})$ and $x \notin \bigcap_{r=0}^{\infty} (-\frac{1}{N+1}, \frac{1}{N+1})$.

(C) $\bigcap_{n=0}^{\infty} \left(-\frac{1}{n\pi_1}, |+\frac{1}{n\pi_1}\right) = [-0,1]$ which is non-empty and closed (also not open). The proof is similar to example cb).

Infinite intersection of open sets may also be neither open nor closed.

For example, $\bigcap_{n=0}^{\infty} (0, |+ \prod_{n \in \mathbb{N}}) = [0, 1]$

2. Give an example of a collection of closed sets whose union is <u>not</u> closed.

Hint. Unfortunately, none of these works:

$$A_n = [0, \frac{1}{n+1}], \quad A_n = [-\frac{1}{n+1}, \frac{1}{n+1}], \quad A_n = [-\frac{1}{n+1}, 1 + \frac{1}{n+1}].$$

Try to modify it so that $A_n \subseteq A_{n+1}$.

In QI, we were taking intersections and that's why we considered nested sequences [Onti = On).

In Q2, we are instead working with unions and therefore we should consider expanding sequences (Anti 2 An)

to construct such an example.

The three given examples don't work because they are nested. Hence, $\bigcup_{n=0}^{\infty} A_n = A_0$, which is closed.

Example that works: $A_n = \begin{bmatrix} \frac{1}{nn}, 1 - \frac{1}{nn} \end{bmatrix}$. Notice the lower end points are decreasing, and the upper end points are increasing.

Claim: $\bigcup_{n=0}^{\infty} A_n = (0,1)$.

Proof: $\forall n \in \mathbb{N}$, $A_n \subseteq (0,1) \Rightarrow \bigcup_{n=0}^{\infty} A_n \subseteq (0,1)$

Let $x \in (0,1)$ be fixed. Then, there exists N_1 , $N_2 \in W$ such that $x > \frac{1}{N_1+1}$, $1-x > \frac{1}{N_2+1}$. Let $N = \max\{N_1, N_2\}$.

Then, $\overline{Nt1} \leq \overline{N_1t1} < X < 1 - \overline{N_2t1} \leq 1 - \overline{N_2t1} = X \leq \overline{N_1t1}, 1 - \overline{N_2t1} = A_N$ This shows that $(0,1) \subseteq \overset{\circ}{\mathbb{N}} A_n$. Therefore, $\overset{\circ}{\mathbb{N}} A_n = (0,1)$. Similar to QI, the union of infinitely many closed sets may be neither closed nor open. For example, consider $An = \begin{bmatrix} \frac{1}{n+1} & 1 \end{bmatrix}, \quad \bigvee_{n=0}^{\infty} A_n = (0, 1].$

3. Let $A = \left\{ (-1)^n \frac{n}{n+1} : n \in \mathbb{N} \right\}$. $= \left\{ -\frac{1}{2}, \frac{2}{3}, -\frac{3}{4}, \frac{4}{5}, \dots \right\}$ (a) Show that 1 and -1 are two limit points of A. (We leave the justification that no other points are limit points of A to the Additional Exercise Question 2 below.) (b) Is A an open set? (c) Is A a closed set? (d) Find the isolated points of A.

(e) Find \overline{A} , the closure of A.

(a) Let's prove that I is a limit point of A. Let 270 be fixed. Let NEW be even such that

Then, 1+8>[-1/4]>1-8 =>) |- 1/2 = (-1) - 1/2 (1) = (1-2, 1+2), |- 1/2 | + 1. Therefore, 1 is a limit point of A. The proof is analogous.

(b) No, A is not open. In fact, every non-empty countable set

is not open. Proof: Suppose A is non-empty and open. Let X&A. Then, there exists & >0 such that Ve(x) SA, But Ve(x)= (x-E,x+E) is a non-empty interval in IR, which contains uncountaby many numbers. Thus, A is uncountable. Now, take the contrapositive of the statement.

(c) No, A is not closed because | is a limit point of A yet (& A.

(d) Since none of the points in A is a limit point of A, every point in A is an isolated point of A.

(e) $\overline{A} = A \cup \{-1, 1\}$.

4. Let $a \in A$. Prove that a is an isolated point of A if and only if there exists an ε -neighborhood $V_{\varepsilon}(a)$ such that $V_{\varepsilon}(a) \cap A = \{a\}$.

Proof:

a is an isolated point of A

≥> a is NoT a limit point of A

at A

a is an isolated point of A

⇒ ∃ετο , (Vε(a) ΛΑ) \}a\/ = φ

7 €70, Vs(a) NA = 103.

⇒ ∃ €70, (V ∈ (a) ∩ A) \ ?a3 = φ

But

 $\exists \exists x \circ , (V_{\xi}(\alpha) \cap A) \setminus \{\alpha\} = \emptyset$ $\iff \exists x \circ , V_{\xi}(\alpha) \cap A = \{\alpha\}.$

Hence, a is an isolated point of A = 3270, VE(a) NA=4a}.

We can strengthen the result a little bit and use it in QJ. Now, we no longer assume that at A. From the derivation above,

But $\exists \ \epsilon 70$, $(V_{\epsilon}(\alpha) \cap A) \setminus \{\alpha\} = \emptyset \Longrightarrow \exists \ \epsilon 70$, $V_{\epsilon}(\alpha) \cap A \subseteq \{\alpha\}$.

Hence, a is an isolated point of A if and only if

5.	Let A and B be any two sets of real numbers. Prove that if x is a limit point of $A \cup B$, then x is either a limit point of A or a limit point of B (maybe both). Hint. We can prove this by contradiction.
	Assume that x is neither a limit point of A nor a limit point of B . Then there exist δ_1 and $\delta_2 > 0$ such that the neighborhood $V_{\delta_1}(x) \cap A$ does not contain any element, except possibly x , and the neighborhood $V_{\delta_2}(x) \cap B$ does not contain any element, except possibly x .
	What do we do with δ_1 and δ_2 ?
[2	But the atransport person of Q4 there aid 5 - 5 5 -

By the stronger version of U4, there exist 0,70, 8,70, such that $V_{\xi_1}(x) \cap A \subseteq \{x\}, V_{\xi_2}(x) \cap B \subseteq \{x\}.$

$$V_{\delta_{1}}(x) \cap A \subseteq \{x\}, V_{\delta_{2}}(x) \cap B \subseteq \{x\}.$$

Let $\delta = \min \{\delta_{1}, \delta_{2}\}.$ Then,

$$\subseteq (V_{\delta_1}(x) \cap A) \cup (V_{\delta_2}(x) \cap B)$$

$$\subseteq \{x\} \cup \{x\} = \{x\}$$

 $V_{\delta}(x) \cap (A \cup B) = (V_{\delta}(x) \cap A) \cup (V_{\delta}(x) \cap B)$

AUB, contradicting the premise that x is a limit point of AUB.

- 6. Let A and B be any two sets of real numbers. Prove that the closure of $A \cup B$ is equal to the union of the closures of A and B.
- Hint. To show " $\overline{A \cup B} \subseteq \overline{A} \cup \overline{B}$ ": use Question 5.

To show " $\overline{A \cup B} \supset \overline{A} \cup \overline{B}$ ": it suffices to show $\overline{A \cup B} \supset \overline{A}$ and $\overline{A \cup B} \supset \overline{B}$. Why are these true?

Case 2.1:
$$\times$$
 is a limit point of $A \Rightarrow \times \overline{A}$
 $\Rightarrow \times \overline{A} \cup \overline{B}$

Case 2.2:
$$x$$
 is a limit point of $B \Rightarrow x \in \overline{B}$

$$C \subseteq D \Rightarrow C \subseteq \overline{D}$$
.

Proof that $C \subseteq D \Longrightarrow \overline{C} \subseteq \overline{D}$. Suppose CSD and XE C. Case 1: $\times \in C \Rightarrow \times \in D \Rightarrow \times \in \overline{D}$ Case 2: X is a limit point of C => Y=70, (V=(x) nc) \ 3x3 + p → ∀ε>0, (Vε(x) ∩ D) \1x3 ≠ β =) x is a limit point of D => X & D. Therefore, we conclude that $\overline{C} \subseteq \overline{D}$. Alternothinely, by the equivalent characterisotion of closure, $\overline{C} = \bigcap_{A \in A_c} A$, where $A_c = A \cap A \cap A$ is closed, $A \geq C_3$ $\overline{D} = \bigcap_{A \in A_D} A$, where $A_D = \{A \subseteq |R: A \text{ is closed}, A \supseteq D\}$. Since CSD, if AEAD, then AEAC. Hence, ADSAC $=) \overline{C} = \bigcap_{A \in \mathcal{A}_{r}} A = \left(\bigcap_{A \in \mathcal{A}_{D}} A\right) \cap \left(\bigcap_{A \in \mathcal{A}_{C} \setminus \mathcal{A}_{D}} A\right)$ = D ((Aetc) A) C D. This is more intuitive. Since there are "more" closed sets containing C than closed sets containing D, C is the intersection of "more" sets compared to D, hence C S D