MH3100 Real Analysis I

Tutorial 7

Qikun Xiang

School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore

12 March, 2021

Recap: Week 7

Compactness Definition: K is compact 20 every infinite sequence in K hors a convergent subsequence with limit in K. lactually, this is called sequential compactness) An open cover of A is a collection of open sets $\{0_{\lambda}: \lambda \in \Lambda\}$ such that $\{0_{\lambda}: \lambda \in \Lambda\}$ such that Equivalent characterisations of compactness in IR: (or IRd)
Heine-Borel (19) K is compact (19every infinite sequence --- ")
Theorem (b) K is closed and bounded
(c) every open cover of K has a finite subcover

Intuitively, a compact set behaves in many ways like a finite set.

e.g. A is compact \Rightarrow min A, max A exist

A is finite => min A, max A exist

trom (ater Suppose f= IR → IR is continuous A is compact \Rightarrow f(A) is compact A is finite => f(A) is finite

1. Suppose that K is a compact set and F is a closed set. Prove that $K \cap F$ is a compact set.
<u>Hint.</u> Show $K \cap F$ is closed and bounded. Alternatively, show that $K \cap F$ satisfies the definition of compactness.
Approach 1: (by the Heine-Borel theorem) Proof:
Since K is compact, we have by the Heine-Borel theorem that K is closed and bounded.
KI) F = K is also bounded.
$KNF \subseteq K$ is also bounded. KNF is also closed because both K and F are closed.
Hence, by the Heine-Borel theorem, KNF is compact. []
Approach 2: (by definition)
Proof:
Proof: Suppose (Yn)new C KNF is an infinite sequence.
We have (Xn)new C K, which implies that there exists a
We have $(X_n)_{n\in\mathbb{N}}$ $\subset K$, which implies that there exists a subsequence $(X_{n_k})_{k\in\mathbb{N}}$ such that $(im\ X_{n_k} = x \in K$, by the compactness of K .
Notice that $(x_{nk})_{k\in\mathbb{N}}$ C F is also a convergent sequence in F . Hence, by the closedness of F , we have $x\in F$.
Hence, by the closedness of F, we have $x \in F$.
Therefore, $(x_n)_{k \in \mathbb{N}} \subseteq (x_n)_{n \in \mathbb{N}} \subset k \cap F$ with

Therefore, $(x_{nk})_{k\in\mathbb{N}} \subseteq (x_n)_{n\in\mathbb{N}} \subset k \cap f$ with lim $x_{nk} = x \in k \cap f$,

and thus KNF is compact.

Approach 3: (open cover)

Croal: every open cover of KNF admits a finite subcover.

Sketch of the proof:

1. Let 20x: XFA3 he an open cover of KNF

1. Let 40x: $\lambda \in \Lambda$ be an open Cover of KNF. 2. F is closed => F is open => 0 λ UF is open $\forall \lambda \in \Lambda$.

(try to fill in the intermediate steps yourself)

3. 4(0xUF°): NEM3 is an open cover of K.

=) by the compactness of K, there exists a finite subset $\{O_{\lambda_1} \cup F^c\}$, $\{O_{\lambda_2} \cup F^c\}$, $\{O_{\lambda_1} \cup F^c\}$, $\{O_{\lambda_1} \cup F^c\}$, $\{O_{\lambda_2} \cup F^c\}$ $\{O_{\lambda_1} \cup F^c\}$ $\{O_{\lambda_2} \cup F^c\}$ $\{O_{\lambda_1} \cup F^c\}$ $\{O_{\lambda_2} \cup F^c\}$ $\{O_{\lambda_3} \cup F^c\}$

(try to fill in the intermediate steps yourself)

4. 20 m: n=1,..., N3 is a finite subover of KNF.

2.	Decide whether the following sets are compact. For those that are not compact, give an example of a sequence contained in the given set that does not have a subsequence converging to a limit in the set.				
	(a) \mathbb{Q} ;	(b) $\mathbb{Q} \cap [0,1];$	(c) \mathbb{R} ;	(d) $\mathbb{R} \cap [0,1]$;	
	(e) {1, 1/2,	$1/3, 1/4, 1/5, \ldots\};$	(f) {1, 1/2	$2/3, 3/4, 4/5, \ldots$.	
(a)	No.	an = n \text{ \text{\tint{\text{\tint{\text{\tint{\text{\ti}\text{\texi}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\texit{\text{\texi}\text{\text{\text{\text{\text{\text{\text{\text{\tex{	Every su	psequence is unbounded	
(b)	No .	$Q_n = \max \left(\frac{m}{2^n} \right)$: $(Q_n)_{n \in \mathbb{N}} \subset \mathbb{Q}$	M G/W ,	1 < \frac{\frac{1}{2}}{3} \text{Hnew.}	
	lim ($\lambda_n = \frac{6}{5} \& Q$ (e same limit.)	1 [O, (]	ly subsequence converges	₩
\ C) No.	an=n them.	Same as	(a).	
Ŋ) Yes,	because IR N Z	راع ألم ال	osed and bounded.	
(e) No,	an = n (im an moder subsequence conver	= 0 b	ut 0& 31, 2, } same limit.)	
(4) Yes,	because it is	bakunod	and closed.	

3. Prove that if nonempty K is compact, then both $\sup K$ and $\inf K$ exist and are elements of K.

<u>Hint.</u> Explain why sup K exists. To show sup $K \in K$, show that there is some sequence $(x_n) \in K$ such that $(x_n) \to \sup K$. Proof of $\inf K \in K$ is similar.

Proof: By the Heine-Borel theorem, K is closed and bounded

K is bounded from above } => sup K exists.

K is non-empty

Let Sup $K = Y \in IR$. For every $n \in IN$, since $Y - \frac{1}{n} < Sup K$, there exists $Xn \in K$ such that $y - \frac{1}{n} < Xn \leq Sup K = Y$

Thus, $(x_n)_{n\in\mathbb{N}}$ $\subset K$ is a sequence in K with $|x_n-y|<\frac{1}{n}$.

[im $|x_n-y|\leq \lim_{n\to\infty}\frac{1}{n}=0$ =) $\lim_{n\to\infty}x_n=y=\sup_{n\to\infty}K$.

and sup KEK by the closedness of K.

(Recall that K is closed & every Cauchy/convergent sequence in K has its limit in K).

in K has its limit in K).

The proof that inf KE K is analogous.

4. Prove that the union of two compact sets is compact via the Heine-Borel theorem. <u>Hint.</u> Show that $A \cup B$ is closed and bounded.
Proof: Suppose A and B are both compact.
By the Heine-Borel theorem:
A is compact =) A is closed and bounded
By the Heine-Borel theorem: A is compact => A is closed and bounded B is compact => B is closed and bounded
Consequently, the closedness of AUB follows from the closedness
consequently, the closedness of AUB follows from the closedness of A and B (because it is a finite union).
Regarding boundedness:
$\exists M, \in \mathbb{R} a \leq M, \forall a \in A$
IMZER 161 = MZ 466B Take M= Max (M1, MZ)
· · · · · · · · · · · · · · · · · · ·
H×EAUB, (x1≤M => AUB is bounded.
, , , , , , , , , , , , , , , , , , ,
Therefore, by the Heine-Borel theorem, AUB is compact. [
Proof by definition: Suppose A and B are both compact.
Let (Yn)new C A UB be an infinite sequence.
Then, one of ((Xn)new NA) and ((Xn)new NB) must be
infinite. Assume without loss of generality that ((Xn) new (A)
is infinite. Then, there exists a subsequence (Xnx) KEN C A, which,
by the compactness of A, admits a further subsequence (Xn.).
with lim Xnx = x EA and thus (Xn) usay admits a
by the compactness of A, admits a further subsequence $(X_{n_{k_3}})_{s\in\mathbb{N}}$ with $\lim_{j\to\infty} X_{n_{k_j}} = x \in A$ and thus $(X_n)_{n\in\mathbb{N}}$ admits a subsequence with $\lim_{j\to\infty} 1$ in AUB. Therefore, AUB is compact. \square .
3.5% (0.000

5. Prove that the union of two compact sets is compact by using the property that every open cover for a compact set K has a finite subcover. Hint. Union of two finite subcovers is still a finite subcover. Proof: Suppose A and B are both compact. Let 20x: AGA3 be an arbitrary open cover of AUB, i.e. UOX 2 AUB. \Rightarrow $\bigcup_{\lambda \in \Lambda} O_{\lambda} \ge A$ and $\bigcup_{\lambda \in \Lambda} O_{\lambda} \ge B$ => 20%: NEM3 is an open cover of A, and 10x=xEx} is an open cover of B. Since A and B are compact, there exist $\Lambda_A \subset \Lambda$, $\Lambda_B \subset \Lambda$ with $|\Lambda_A| < \infty$, $|\Lambda_B| < \infty$, such that U ON DA , U ON DB, i.e. 20%: XENA 3 is a finite subcover of A, and 20%: LENB) is a finite subcover of B. Let N = 1 AUNB. We have (R) <0, NC N $\bigcup_{\lambda \in \mathcal{R}} \mathcal{O}_{\lambda} = \left(\bigcup_{\lambda \in \Lambda_{A}} \mathcal{O}_{\lambda}\right) \cup \left(\bigcup_{\lambda \in \Lambda_{B}} \mathcal{O}_{\lambda}\right) \supseteq A \cup B. Then,$ 20%: NEX? is a finite subcover of AUB.

Therefore, AUB is compact.

6. Give an example of a set X, and an open cover of X that does not have a finite subcover.

subcover.

Hint. Consider either X unbounded or not closed.

(a)
$$\mathbb{Q}$$
; (b) $\mathbb{Q} \cap [0,1]$; (c) \mathbb{R} ; (d) $\mathbb{R} \cap [0,1]$;

(e)
$$\{1, 1/2, 1/3, 1/4, 1/5, \ldots\};$$
 (f) $\{1, 1/2, 2/3, 3/4, 4/5, \ldots\}.$

(b)
$$\Omega_{n} = \max \left\{ \frac{m}{2^{n+1}} : \text{MEND}, \frac{m}{2^{n+1}} < \frac{\sqrt{2}}{2} \right\} \forall n \in \mathbb{N}$$

$$b_n = min \left\{ \frac{m}{2^{m+1}} : m \in \mathbb{N}, \frac{m}{2^{m+1}} > \frac{E}{2} \right\} \quad \forall n \in \mathbb{N}$$

Let
$$O_{n} = (-\frac{1}{2}, \alpha_{n}) \cup (b_{n}, \frac{3}{2}) \quad \forall n \in \mathbb{N}$$
.

Then, $O_{n} = (-\frac{1}{2}, \frac{3}{2}) \setminus \{\frac{5}{2}\} \supseteq Q \cap [0,1]$.

For any finite subset
$$\{O_{n_1}, O_{n_2}, \dots, O_{n_m}\} \subset \{O_{n}: n \in \mathbb{N}\},$$

we have
$$\bigcup_{k=1}^{N} O_{n_k} = O_{n_m} = (-\frac{1}{2}, a_{n_m}) \cup (b_{n_m}, \frac{3}{2})$$

$$\frac{a_{nm}+b_{nm}}{2} \in \mathbb{Q} \cap [0,1] \text{ but } \frac{a_{nm}+b_{nm}}{2} \not\in \underset{k=1}{\overset{m}{\bigvee}} O_{nk}.$$
Hence, $\{0,:n\in\mathbb{N}\}$ does not admit a finite subcover.

For any subset
$$\{O_{n_1}, O_{n_2}, \dots, O_{n_m}\} \subset \{O_n : n \in \mathbb{N}\}$$
, we have $\bigcup_{k=1}^m O_{n_k} = O_{n_m} = (-n_m, n_m) \not\supseteq \mathbb{R}$.